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S U M M A R Y  
Thickness-twist modes with energy trapping in a piezoceramic plate covered by infinite strip electrodes of infinitesimal 
thickness are analysed. By using Fourier transforms, the linear, three-dimensional equations for a piezoceramic plate 
are reduced to an integral equation for the charge distribution on the electrodes. Expanding the charge density in a 
finite series, the lowest resonant frequency as a function of the ratio with electrodes over thickness plate is computed. 
The computed values are compared with the results of an approximate approach given by Holland and Eer Nisse. 
For small values of the mentioned ratio, considerable deviations occur. 

1. Introduction 

In recent years the principle of energy trapping is widely utilized in piezoelectric thickness mode 
resonators and filters [1]-[3].  The most simple trapped energy device is a plate of which a 
central region is covered by electrodes and of which the faces of the outer, surrounding region 
are completely free of electrodes. 

The thickness-wave propagation in a plate has a fundamental cutoff frequency below which 
its amplitude vanishes exponentially with increasing distance to the point of excitation. The 
cutoff frequency of a piezoelectric plate with faces completely coated by electrodes (of finite or 
infinitesimal thickness) is below the one of a plate without electrodes. In addition to the 
possible finite thickness of the electrodes this lowering is due to the phenomenon that the 
behaviour of a plate with completely electroded faces differs from the behaviour of a plate 
without electrodes. For a piezoceramic plate with a relatively large coupling factor, the lowering 
due to the presence of infinitesimally thin electrodes, completely covering both faces, is con- 
siderable [1]. 

Hence the central part of the trapped energy plate has a cutoff frequency below the cor- 
responding frequency in the surrounding part. Consequently energy is trapped in the central 
region when the plate is excited by a potential difference between the electrodes with an ap- 
propriate frequency between the cutoff frequencies of the two parts. 

Energy trapping can among others be obtained in piezoceramic plates vibrating in the thick- 
ness-twist mode. This case is approximately treated by Holland and Eer Nisse [1]. An in- 
finitely extended plate is considered with the direction of polarization in the plane of the plate. 
Each face is covered by an infinite strip electrode, running parallel to the polarization. Resonance 
spectra for some thickness-twist waves are given for a plate with an electromechanical coupling 
factor equal to 0.685. These spectra are obtained by determining the wave solutions in an 
unbounded electroded and unelectroded plate and coupling these wave solutions at the 
boundary of the electroded and unelectroded parts in a rough manner. 

However the wave solutions are not valid near the boundary of the mentioned regions. 
Hence it may be expected that the spectra given in [1] are only reliable in case the disturbances 
due to the edge of the electrodes are relatively small, i.e. if the width of the electrodes (2a) is 
large with respect to the thickness of the plate (2h). 

In order to obtain correct values of the resonant frequencies for all values of a/h, in this 
paper an exact approach of the abovementioned problem is given in case the electrodes have 
an infinitesimal thickness. The analysis is based on the linear, three-dimensional equations for 
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the complete plate. Using Fourier transforms, the equations governing the plate are reduced 
to an integral equation for the charge distribution on the electrodes. This density is written as 
the sum of a term containing a squareroot singularity near the edge of the electrodes and a 
finite expansion in even powers. Substituting this expression into the integral equation, a 
system of homogeneous linear equations for the unknowns in the expansion of the charge 
density is obtained. 

The lowest resonant frequency associated with the first thickness-twist wave is computed 
from this system as a function of a/h for a /h< 5 and three values of the electromechanical 
coupling factor. It appears that the approximate results obtained by Holland and Eer Nisse 
deviate considerably from the correct values given in this paper. This deviation should be 
caused by the fact that the charge density has a squareroot singularity near the edge of the 
electrodes, which is not contained in the investigation in [1]. This singularity determines the 
resonant frequencies essentially for small values of the parameter a/h as follows from the results 
given in this paper. 

2. Formulation of the Problem 

We consider an infinitely extended piezoceramic plate of constant thickness 2h and uniformly 
polarized in its own plane. Figure 1 shows a cross section of a part of the plate. Cartesian 
coordinates (xl, x2, x3) are chosen with x2 = _+ h defining the faces of the plate. The xa-axis 
is in the direction of polarization. Both faces are covered by an infinitesimally thin strip 
electrode, occupying the regions x2 = + h, Ixtl < a. The faces are free of stresses ; the plate is 
excited by a periodic potential difference between the electrodes. In the remainder the ex- 
ponential time factor is omitted. 

x 2 

2 a  �9 / /  

/ / "  

x 3 

Figure 1. Cross section of a part of the plate. 

A piezoceramic plate, polarized in the x3-direction, is governed by the following constitutive 
relations, 

Zl l  = Ec1111S11-[-Ec1122S22-q-Ec1133S33--e311E3 , (2.1.a) 

T22 = ECl122Sll-l-Ec1111 $22~-ECl133S33 --e311 E 3 ,  (2.1.b) 
T33 = EC1133 (S l l  - $22)+  EC3333 $33 -- e333 E 3 ,  (2.1.c) 

T12 = 2Ecj.212S,2, (2.1.d) 

T13 = 2/~c1313 S13 - el 13 E l ,  (2.1.e) 

T23 = 2 % 1 3 1 3 S 2 3 - e l 1 3 E 2  , (2.1.0 

D t = 2el t3 $13 + s~l 1 E1 , (2.1.g) 

.D 2 = 2 el 13 $23 + sel 1 E2, (2.1.h) 

D 3 = e311(S l lWS22)WeaaaSa3+Sg33E3  . (2.1.i) 
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The stresses are denoted by the symbol T, the strains by S, the electric field by E and the electric 
displacement by D. ~cl ~ ~ 1..-%~3x3 represent the elastic coefficients measured at constant 
electric field, el 1 a, e311 and eaa3 the piezoelectric constants and se~ ~ and %33 the dielectric 
constants, measured at constant strain. The indices denote the components in the usual manner. 

In addition we have the equations of motion, 

T~j., = - #coz Uj, j = 1, 2, 3,  (2.2) 

the strain-displacement relations, 

S~j = �89 Uj,~), i,j = 1, 2, 3,  (2.3) 

and the Maxwell equations, 

Di, i = 0 ,  (2.4.a) 

E~ = - V,, i =  1, 2, 3.  (2.4.8) 

# denotes the mass density of the plate, co the circular frequency of the applied potential 
difference, U the geometrical displacements and V the electric potential. A comma followed 
by an index denotes the differentiation with respect to the coordinate indicated. In (2.2)-(2.4) 
the summation convention for repeated indices is employed ; i and j run over 1, 2 and 3. 

Since the faces are free of stresses, the mechanical boundary conditions read 

Tj2 = 0 ,  x2 = +__h, j =  1, 2, 3.  (2.5) 

Further we have 

V= Vo, x 2= h, }x1[ < a ,  
(2.6.a) 

V = - V o ,  x z = - h ,  Ixll<=a, 

DCa) n(2) _ n = (2.6.b) 2 - u 2  - , , ,  x2 + h ,  I x t l > a .  

Here D~ 1) represents the electric displacement component inside the plate and D~ 2) this com- 
ponent outside the plate. We assume that outside the plate the electrostatic equations of vacuum 
may be applied. Hence in the regions [xz[ > h the equations (2.4) are valid in addition to 

D i = % E l ,  i = 1, 2, 3,  (2.7) 

where ~o is the permittivity of free space. 
Now we consider thickness-twist waves propagating along Xl and with U1 and U2 equal to 

zero. In addition we assume that the remaining displacement U3 and the potential V are only 
functions of xl and x2. Then the stresses TI~, 7"12, T2> T33 and the electric displacement D 3 
vanish in virtue of (2.1), (2.3) and (2.4.b). The nonzero stresses and electric displacements, 
expressed in derivatives of U3 and V become, 

T~3 = (%13~3 U3 + ex 13 V),~, (2.8.a) 
O~ = (e,1 a U3-Sell V),~, (2.8.b) 

where = is 1 or 2. 
For  convenience we introduce a function ~, defined by 

cli= ell3 U3-Sql  V. (2.9) 

Then the equations (2.8) can be written in the form 

T~3=(~ ' % 1 1  ,~ (2.10.a) 

D~ = ~b~, (2.10.b) 

where %1313 is an elastic constant measured at constant electric displacement, 

DC1313 = EC1313 "1- (e113)~2 (2.11) 
$811 
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Substituting (2.10) into (2.2) and (2.4.a), the following differential equations are obtained, 

Dc1313AU3+po)2 U3 = 0, (2.12.a) 

A~b = 0. (2.12.b) 

Here A represents the Laplace operator with respect to xa and x2. 
The regions [x2[ > h are governed by the equation 

A V = 0. (2.13) 

The problem considered can be reduced to a problem for the quarter space x~ >0, x2 >0  
by means of some symmetry considerations. First we observe that the plate is isotropic in the 
(x~, x2) plane. In addition the boundary conditions are symmetric with respect to the plane 
x~ =0;  hence the wave solution will be symmetric in the coordinate xl. 

Let us suppose further that the solution is known, hence U3 and V are assumed to be known 
functions ofx t and x2. With respect to the coordinates x'~, x'z (fig. 2) this solution reads in virtue 
of the isotropy of the material in the (x~, x2) plane and the boundary conditions, 

{ -/23, - V} (x'~, xi) .  (2.14) 

I x2 
X 1 ~-- ~,, X 1 

Figure 2. The coordinates x'~ and x~. 

The solution in the coordinates introduced above, is also obtained by applying the tensor 
transformation xl = -x'~, x2 = -x~  to U3 and V, yielding 

{U3, V} (-x'~, - x l ) .  (2.15) 

Since the wave solution is even in Xl, we derive from (2.14) and (2.15), 

U 3 = V = 0 ,  x 2 = 0 .  (2.16) 

Now we can confine ourselves to the region xl >0, x2 >0. 

3. An Integral Expression for the Charge Distribution on the Electrodes 

U3 and V being even functions of xl, the Fourier cosine transform may be applied. We denote 
the transform of a function f(xl, x2) by f*  (4, x2), hence [4], 

Multiplying both sides of (2.12) by (2r~) -~ e icx' and integrating over the whole range of xl, 
we arrive at the following ordinary differential equations, 

Dc~3~3(-~1 U~'+ U~',/z)+ #~ 2 U* = 0,  (3.2.a) 

- -  42 ~)* "-1- ~ , 2 2  : 0 .  (3.2.b) 

These equations enable us to assume 
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U* = A~ eP~2 + A2e - v ~  , 

where 

1 9 - - - ~ 5  , c13.  / 

! , 

1 

147 

(3.3.a) 

(3.3.b) 

(3.4) 

Aa, A2, B1 and B 2 are functions of 4, determined by the boundary conditions. The factor el 13 
is introduced in order to obtain appropriate dimensions. 

In virtue of the condition (2.16), A2 = - A 1  and B2= -B1,  hence we can write 

U~' = A sinh P~X2, (3.5.a) 

~*  = e l l 3 B  sinh ~x2, (3.5.b) 

where A and B are arbitrary functions of r for the time being. Due to (2.5) T23 vanishes for 
x2 =h. Using (2.10.a), (3.1) and (3.5) this condition yields 

Ap cosh p~h-k2B cosh ~h = 0.  (3.6) 

Here k represents an electromechanical coupling factor, 

k = e113 
(/9Cl; 13 SSll) i  (3.7) 

Applying the Fourier transform to (2.9), we obtain, using (3.5), 

A sinh p ~ h - B  sinh ~h = sell V*(~, h) (3.8) 
e l l 3  t 

Simililarly we derive from (2.10.b) and (3.5.b), 

el13B~ cosh ~h = D*(~, h). (3.9) 

Combination of (3.6), (3.8) and (3.9) yields 

D* (4, h) = - se~a ~H (4) V* (4, h), (3.10) 

where 
(s inh ~h k 2 sinh p~h ~-t 

H(r = kcosh ~h p c @ /  " (3.11) 

In virtue of (2.13) we have the following general solution for the region x~ >0, x2 > h  in 
terms Of Fourier transforms, 

V* = G(~)e-glx2. (3.12) 

Hence from (2.7) and (2.4.b) 

D~ = %aiS le  -Ir = ~o1r V*. (3.13) 

The charge distribution on the electrode 0<  xl < a, x2 = h is denoted by F(xl) and equals the 
discontinuity of D2 for x2 = h. Due to (2.6.b) we have 

F*(r = F(r) cos ~rdr. (3.14) 

The equations (3110) and (3.13) lead to the expression 

F*(~) = {% sign ~+SexiH(~)} r162 h). (3.15) 

Applying the inverse Fourier transform, we obtain [4] 
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V(x~, h) = V* (4, h) cos ~xl d~. (3.16) 

Combining (3.14), (3.15), (3.16) and the condition (2.6.a), we arrive at the following integral 
equation, containing the unknown F(r), 

I ]  ~{eo+SellH(~)}c~ l i  F(r)cos~rdrd~ _ TzVo2 ' O<-xl = (3.17) 

Now we introduce the following nondimensional quantities 

x~ h r 
x = - - ,  t = - ,  p = - ,  r / = a ~ ,  

a a a 

a-~- F(ap), f2=h ~o. G(p) = 

Then (3.17) is transformed into 

cos t/x 1 G (p) cos rip dp dtl - 2 I + 

where 
H (~) = { sinh tt/ k 2_ sinh ptrl "]-t 

\ cosh tt/ p cosh ptt 1 } 

(3.18) 

- - - ,  0 <  x <  1,  (3.19) 

(3.20) 

with p defined by 

- -  t 2 y ] 2 /  ' /~ > - -  = t ' 

i t2r /2  1 , 0 < ~ 1  < - - . t  

The quantity gr is a relative dielectric constant, 

S g l l  

gO 

(3.21) 

(3.22) 

4. The Numerical Approach for Evaluating the Resonance Spectra 

In order to evaluate resonant frequencies, equation (3..19) is solved with a vanishing right-hand 
side. Since for piezoceramic materials ~r is a large number, the term (e,)-1 occurring in the 
left-hand side of (3.19) is neglected. Hence we consider the integral equation 

G(p) cos rlpdpdr I = 0, 0_< x_< 1 (4.1) 
o r/ o 

where 

K(t/) = {H(q)}-i (4.2) 

It is reasonable from physical considerations that G(p) has a squareroot singularity for 
p = 1. Further we know that G(p) is an even function. Hence, in order to perform numerical 
calculations, G(p) is approximated by the following series 

2 N 
ao n( l_p2)~ + ,=~Z (2n-1)a,P 2("-1) , (4.3) 

where ao...aN are unknown constants. 
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The form (4.3) is substituted into (4.1) and it is required that the resulting integral equation 
is satisfied in N +  1 points of the range 0 <  x <  1, which are denoted by xm, m =0. . .N.  Then 
we obtain the following system of linear, homogeneous equations for a,, 

N 
Z bm, a ,= O, m = O . . .  N .  (4.4) 

n = O  

Using the well-known relation 

f l cos qp . n 
o (1 _p2)+ dp = ~ Jo(r/), (4.5) 

and defining 

L.(,) = (2n-1) 11 p2(.-,)cos r/pdp, (4.6) 

the coefficients b.,. become 

b,,o = (| K(r/) cos x,,r/Jo(r/)dr/, (4.7.a) 
Jo r/ 

bin, = (+ K(r/)cos x,,r/ L,(r/)dr/, n=  1.. .  N .  (4.7.b) 
0o r/ 

Jo (r/) denotes the zero-order Bessel function of the first kind. The points x,, are chosen as 

mT~ 
xm = sin 2 N '  m = 0 ... N .  (4.8) 

We observe that the function K depends also on fL Consequently the coefficients b,,, are 
functions of •. Resonance occur in case the determinant of the coefficients b, , ,  denoted by 
d(~), vanishes. 

In order to evaluate the lowest resonant frequency as a function of t, d(•) is computed for a 
number of values of ~2 in the range 

~Qe < e <  ~u (4.9) 

and for a number of values of t. In (4.9) (~e denotes the first normalized cutoff frequency of the 
thickness-twist wave in a fully electroded, infinite plate and f2, this frequency in an infinite 
plate without electrodes. For  every piezoceramic plate f~, = �89 [1] ; f2 e depends on the coupling 
factor. By means of interpolation the zero required is obtained from the computed values of d 
at fixed t. 

Now we discuss the computation of the coefficients b,,,, defined by (4.7). First we consider 
the quotient K (r/)/r/. From (3.20) and (3.21) we derive that the function H(r/) vanishes nowhere 
for r/>(2/t. H(r/) tends to a nonzero limit as r/~oo, 

1 
.+~lim H(r/) - 1 -  k 2" (4.10) 

Hence K(r/)/r/is bounded in the half-infinite range q >f2/t and vanishes as 0(l/r/) as r/~oe. 
For 0 <  r/< f2/t we derive from (3.20), (3.21) and (4.2), 

sinh tr/ k2tr/ tan ( ~ 2 -  t2r/2) + (4.11) 
K(r/) = cosh tr/ ((~2-t2r/2)+ 

In virtue of the restriction (4.9) with ~?u = �89 we have 

0 < (f2 2 - t 2 r/a) + < �89 (4.12) 

Hence K(r/) and consequently K(r/)/r/is finite in the mentioned range. For  small values of r/ 
we derive from (4.11), 
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k 2 tan f2) 
K(q) = t~ 1 O + ~ (4.13) 

This equation yields 

lim K(t/) t ( 1  k2 tan f2) (4.14) 

Now K (q)/r/is bounded for r /> 0. 
In order to calculate the integrals in the right-hand side of (4.7), the positive r/-range is 

divided into the subranges 0<  ~/< 2 and r /> 2. Since K (~/)/q is bounded, the integration over 
the first subrange can be performed easily. The functions L, (r/) are obtained by expanding the 
cosine in (4.6) in a power series and integrating term by term. Then 

L.(~) = 
( -  1)/(2n- 1)q 21 

,=0 (21)!(2l+2n-1)' n= 1 ... N .  (4.15) 

B5 truncating the series (4.15) after a sufficient number of terms, the function L,(~/) can be 
computed as accurate as desired. In virtue of the introduction of the factor (2n-  1) in (4.3), 
the functions L,(~/) are normalized such that L,(0)= 1. 

When r/tends to infinity, the integrands in the right-hand side of (4.7) vanish slowly and it is 
inefficient to perform the integrations over the second subrange directly from (4.7). Therefore 
some operations are applied to the mentioned integrals. In virtue of (4.2) and (4.10) we write 

K 01) = 1 - k 2 + K' (q). (4.16) 

Now K'(q)--+0 as q--+ c~ and we have to calculate the integrals 

f~ c~ xm~l J~ (4.17.a) 

f~ cos x,,~ L,(~l)dq, (4.17.b) 

i v K'(*/) cos Xmq 
2 j r  

In order to evaluate (4.17.a) we apply the asymptotic expansion [5], 

Jo(t/) ~ ( \ 2 )  ~ { c o s ( , / - 4 3 "  P01,+sin ( , -  4 )"  Q(t/' I 

where 
1 ~ . 32 12 . 32 . 52 . 72 

P(r/) = 1 2!(8t/)2 + 4!(DI) 4 ... 

12 12 �9 3 2 �9 5 2 

!2(*/) - 1! 3 ! ( 8 &  + . . . .  

Using two terms of the expansion (4.19), (4.17.a) can be written as 

For R(*/) we have the expression [5], 

(4.17.c) 

(4.17.d) 

(4.18) 

(4.19.a) 

(4.19.b) 

. 

12_98./2) + sin @ _ n 1 75 

f~ COS xmr/R(r/)dr/. (4.20) 
+ r/~ 
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{ @ ) 12" 32" 52' 72 
R(r/) ( 2 )  ~ 7~ "0 t = cos - 

\rc~ / 4 4! (8q) 4 

with 0<  01, 02< 1. 
Applying the formulae 

cos cos/  = �89 (cos + cos •) } 

cos ~ sin fl=�89 (e+f l ) -s in  (~-fl)} 

12.32.52.72-92 ~ 

(4.21) 

(4.22.a) 

(4.22.b) 

and integrating by parts, the first integral in (4.20) can be reduced to Fresnel integrals. The latter 
integrals are computed by means of an Algol-procedure, available at the University of 
Groningen. This procedure is based on Chebyshev approximation. 

In virtue of (4.21) R(t/) vanishes rapidly as t /~ oe. Hence an efficient computation of the 
second integral of (4.20) is possible, since we need a relative small range of integration for 
evaluating this integral with a certain accuracy. 

From (4.6) we derive 

Lx(t/) _ sin t/ 
t/ (4.23) 

Defining 

M,,(p) cos x,,~ sin p~/ 
172 dr/, (4.24) 

the integral (4.17.b) can be denoted by M,, (1) for n=  1. Integration by parts yields for n > 1, 

L, (~) - (2n-  1) sin ~ (2n-  1)(2n- 2) p2,-3 sin ~p do. (4.25) 
t/ q o 

Substituting this expression into (4.17.b) and interchanging orders of integration, we arrive 
at the following integral 

(2n-1)(2n-2)iloP2"-3{M,,(1)-M,,(p)}dp. (4.26) 

The functions M,, (p) can be expressed in the function Ci, defined by 

Ci(u) = cos t dt. (4.27) 
oo t 

For the computation of this integral we use again an available procedure in which a Chebyshev 
series is applied. Evaluating M,,(p) in this way the computation of (4.26) can be performed 
without any difficulty. 

From (4.16) follows 

- 2e- 2t. k2 ~ 2e- 2m 1 } 
K'(t/) - l+e_2t  ~ + [ p ( l + e _ 2 m  ) + 1 - P -  (4.28) 

for t /> Y2/t. The expression 1 - lip vanishes relatively slowly in comparison with the exponential 
functions as t /~ oo. Therefore we use the expansion 

1 1 l ( ~ f  3 ( 0 )  4 L (~-2)6 R' 
P - { 1 -  (f2)2} -g = 1 - 1 - ~ ~  -l-g ~ + 16\ t t / ]  + . (4.29) 

For R' we have 

__35 (~)8 
IR'I < ]~p �9 

Now the function 

(4.30) 
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- 2e- 2tt/ k2 ~ 2e- 2ptt/ ,} 
K"(r/) - l+e_2 ,  . + {p(l+e_2pt. ) R 

vanishes sufficiently rapidly in order to approximate the infinite integrals 

f ~  Kt ' (~)c~ Xm~ Jo(l~)dt~, (4.32.a) 

I ]  K"01) c~ x " " ~ / L , ( t l ) d q ,  (4.32.b) 

accurately by performing the integrations over a relatively small range. 
To complete the calculation of (4.17.c) and (4.17.d) we have still to compute the expression 

3 cos  Xm~ L (~c~ 6 
- k 2 { ~  (---~t) 2 f~ COS-r/3X--mr/f(rl)drl + -~ (~[)+ I7 rl 5 f(rl)dtl + 1 6  \ t  / 

i; } rl 7 f(tl)dtl, (4.33) 

where f01) equals Jo(q) or L,(~/), n=  1 ... N. The integrals in (4.33) are independent of O. They 
are computed in the same manner as (4.17.a) and (4.17.b). 

The integrations discussed above are performed by means of Simpson's rule with Richardson's 
correction, except the computations of the Fresnel integrals and the function Ci for which an 
available procedure is used. If the correction term happens to come out too large, the interval 
is divided in two equal parts and the integration process is invoked recursively. This is done in 
such a way that the total amount of Richardson's corrections is slightly smaller that the 
prescribed, absolute tolerance. Since the integrals (4.17.a), (4.17.b) and the ones in (4.33) are 
independent of O and t, these contributions to the coefficients bin, are computed first. After 
that the remaining integrals are calculated. 

D. H. Keunin9 

(4.31) 

5. Numerical Results 

In order to compare the approximate lowest resonant frequencies given by Holland and Eer 
Nisse with the corresponding frequencies obtained from the exact equations, computations are 
performed for k = 0.685. The coefficients bin,, defined by (4.7), are computed with an error less 
than 10- 6. For N we take the value 7. It appears that we are now ensured of 3 significant digits 
in the ultimate results. The computed resonant frequencies are represented by the second 
column of the following table. Here f2~ denotes the first, positive zero of d(O), Oe=0.3811 z~ 
and f2,=0.5 re. 

To show the influence of the square-root singularity of the charge density on the resonant 
frequencies for large values of t, also computations are performed in case G(p) is only ap- 

TABLE 1 

f2, -- 0 e O, -- Qe 
f2, -- t? e ~,  -- f2, 

0.2 0.038 
0.5 0.144 
1 0.286 
2 0.451 
5 0.633 

10 0.726 
20 0.788 

100 0.873 

0.424 
0.629 
0.726 
0.788 
0.873 
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proximated by the first term of the series (4.3) and the integral equation is satisfied at x =  0. 
The resonant frequencies obtained in this way are given in the third column for t > 2. For 
t > 10 the results in the second and third column agree in three digits. 

For large values of t the resonant frequencies can be represented by 

-0 .686  
t ~  + 0.942. (5.1) 

Hence the quotient (f2,-  I2e)/(f2 u -  Oe) tends to 0.942 as t ~  ~ and not to 1 as suggested in [1]. 
In figure 3 the computed resonant frequencies and the approximate ones, given in [1], are 

plotted as a function of t-  1 = a/h. We observe that in addition to the mentioned deviation for 
t - 1 ~ 0  also relatively large deviations occur for values of t of 0 (1). 

In order to investigate the influence of the coupling factor also calculations are performed 
for some other, arbitrarily chosen values of k (k = 0.548 and k = 0.800). In figure 4 a plot of the 
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Figure 3. Correct and approximate resonant frequencies for k=0.685. 
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Figure 4. Resonant frequencies for three values of k. 
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lowest resonant frequencies for three values of k are given. For  k = 0.548 they can be represented 
by 

- 0.439 
- -  + 0.977 (5.2) 

t�89 

as t ~ o e  and for k=0.800 by 

-0 .919  
+ 0.869. (5.3) 

t ~ 
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